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ABSTRACT
In static typing, the receiver’s static type is the key to effi-
cient implementation of method invocation, and a recently
proposed technique, based on perfect hashing of classes, can-
not apply to dynamic typing because of the lack of static
types. In this article, we propose a new application of perfect
hashing to method dispatch in a dynamic typing, dynamic
loading and single inheritance setting. The approach in-
volves hashing method selectors instead of classes. However,
as hashing all methods revealed itself to be space-inefficient,
only overloaded methods, ie methods introduced by several
classes, are hashed. The dispatch of non-overloaded meth-
ods is done as in single-subtyping, ie static typing and single
inheritance.

An adaptive-compilation protocol and an algorithm for
hashing overloaded methods are proposed, and the approach
is tested on Smalltalk benchmarks by simulating class
loading at random.
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1. INTRODUCTION
In spite of its 30-year maturity, object-oriented program-

ming still has a substantial efficiency drawback in the dy-
namic loading context and it is worsened by either multiple
inheritance, or dynamic typing. In the dynamic loading con-
text, compilation must be separate (as opposed to global), ie
code units are compiled separately from each other. Com-
pilation can also be static or dynamic. With static compila-
tion, each code unit is compiled once for all, and this implies
the open-world assumption (OWA) which makes the gener-
ated code rather inefficient. In contrast, with dynamic com-
pilation, a code unit can be further recompiled; it thus al-
lows the compiler to perform aggressive optimizations, based
on provisory closed-world assumptions (CWA), which makes
the code more efficient, at the price of extra recompilations.
The overall efficiency is thus a tradeoff between the runtime
efficiency of the generated code and the recompilation cost.
This article focusses on both dynamic compilation and dy-
namic typing.

In recent articles, we proposed a new implementation ap-
proach, called perfect class hashing [Ducournau, 2008] and
based on perfect hashing, ie truly constant-time, collision-
free hashing [Sprugnoli, 1977, Czech et al., 1997]. From an
algorithmic point of view, a variant called perfect number-
ing involves optimizing the class IDs in order to minimize
the hashtable sizes [Ducournau and Morandat, 2011]. Real-
size experiments in the Prm compiler [Ducournau et al.,
2009] showed that perfect hashing would be quite efficient
for implementing multiple subtyping, ie Java interfaces, in a
static, separatate compilation setting. However, it would be
rather inefficient, ie as inefficient as C++-like subobjects,
when used in a full multiple-inheritance context [Morandat
and Ducournau, 2010]. Therefore, we also proposed a com-
pilation/recompilation protocol that would allow for an ef-
ficient implementation in a just-in-time, dynamic compiler
[Ducournau and Morandat, 2012]. Indeed, in this dynamic
setting, most invocation sites can use shortcuts that are
more efficient than perfect hashing.

However, perfect class hashing can be used only in a static
typing setting, because it involves hashing classes, and group-
ing methods by introduction class. On a given invocation
site, the introduction class is thus deduced from the re-
ceiver’s static type. In contrast, even with single inheritance,
in a dynamically typed language like Smalltalk [Goldberg
and Robson, 1983], a method (ie a method selector in Smalltalk
jargon) may be introduced by several classes. Hereafter, we
will say that such methods are overloaded1. Therefore, the

1 This use of the overload term must not be confused with



perfect hashing approach requires, in this new context, an
efficient way of hashing methods instead of classes, and first
experiments showed that perfect method hashing was not
that space-efficient [Ducournau, 2008].

In this paper we propose an object representation and
a recompilation protocol which provide an efficient use of
perfect method hashing for implementing Smalltalk-like
languages. The main idea is that perfect hashing is used
only for overloaded methods, which are presumed to be few
enough for keeping the overhead low. However, as the over-
load feature depends on the classes that are actually loaded,
these hashtables must be recomputable, and an extra in-
direction is required. In contrast, methods that are intro-
duced by a single class are invoked in the same way as in
single-subtyping (SST), by deducing the single introduction
class from the method selector instead of the receiver’s static
type. Besides, common optimizations like monomorphic in-
vocations can be considered.

Plan. The rest of the article is structured as follows. The
next section presents the object-representation issue, and
states our proposal of applying perfect hashing (more pre-
cisely, a variant called perfect numbering) to overloaded meth-
ods. Section 3 presents the compilation/recompilation pro-
tocol the technique requires in an adaptive compiler. Sec-
tion 4 presents our experiments, based on a simulation of
large benchmarks with random class-loading. These tests
show that overloaded methods are few enough, thus making
the overhead of perfect hashing very low. Furthermore the
algorithm appears to be space-efficient enough to be further
considered. Conclusions and prospects end the article.

2. OBJECT AND VALUE REPRESENTATION

2.1 Object representation

Single subtyping. Figure 1 describes the implementation
used in single-subtyping (SST), ie in static typing, when all
types are classes and have a single direct supertype. This
implementation is simple and efficient, as it satisfies the posi-
tion invariant : the considered method or attribute is always
implemented at the same position, whatever the receiver’s
dynamic type. In this implementation, methods and at-
tributes are grouped by introduction class (type) and the
group of a class is appended to the structure of its direct su-
perclass. Subtype testing is implemented with the technique
known as Cohen’s display [Cohen, 1991], with the class ID
in each method group. However, the SST approach cannot
be used either with multiple inheritance or dynamic typing.

Perfect class hashing in static typing. Figure 2 describes
the implementation of method invocation and subtype test-
ing with perfect class hashing, in a static typing setting. It
can be used directly for multiple subtyping (ie Java inter-
faces). In the method tables, the positive offsets contain

static overloading, which represents, in languages like C++,
C# or Java, the fact that a method name can be used in the
same context with different parameter types or numbers. It
must not either be confused with overloaded functions which
represent methods dispatched, at run-time, on all their pa-
rameters [Castagna, 1997]. Finally, it must not be confused
with overriding, which denotes the fact that a method de-
fined in a class can be redefined in a subclass.

// attribute access
load [object + #attOffset], attVal

// method invocation
load [object + #tableOffset], table
load [table + #methOffset], methAddr
call methAddr

// subtype test
load [object + #tableOffset], table
load [table + #classOffset], id
comp id, #targetId
bne #fail
// succeed

meth

Offset

att

Offset

methAddr

class

Offset

object

object

method table

attVal

table

id

Code sequences for the 3 basic mechanisms and the corre-
sponding diagram of object layout and method table. The
pseudo-code is borrowed from [Driesen, 2001]. Pointers and
pointed values are in Roman type with solid lines, and offsets
are italicized with dotted lines.

Figure 1: Single-subtyping implementation

the SST implementation which is used for class-typed in-
vocations. Interface IDs are hashed and method addresses
retrieved in the group introduced by the interface that in-
troduces the considered method. The technique can also
be extended to attribute access for full multiple inheritance,
but this extension (called accessor simulation) is not that
efficient. In [Ducournau and Morandat, 2012], we proposed
to used this implementation in a dynamic loading setting,
in conjunction with a recompilation protocol which allows
the compiler to shortcut most of the polymorphic PH invo-
cations with SST invocations. This optimization is possible
when the position invariant holds, and it is made efficient
by the fact that it holds most of the time. Furthermore, all
monomorphic method calls2 are shortcut with static calls.
It would thus avoid most of the uses of PH in actual invo-
cations. Anyway, this approach cannot work with dynamic
typing.

All-method perfect hashing in dynamic typing. Meth-
ods can be hashed directly, too. Figure 3 describes the
implementation of method invocation and subtype testing
in dynamic typing, with perfect method hashing. In single
inheritance, it would be more efficient to remove class IDs
from the hashtable and put them as in SST but in negative
offsets. In multiple inheritance, the hashtable must be ex-
tended for attribute access, with accessor simulation, but it
works only with Smalltalk-like encapsulation. This new

2An expression is said to be monomorphic when its value
at runtime will always be of the same dynamic type. When
the receiver is monomorphic, a virtual call always invoke
the same method. Here, we use monomorphic in a wider
meaning, that is when a virtual call always invoke the same
method (even when the receiver is not monomorphic).



//preamble for both mechanisms
load [object + #tableOffset], table
load [table + #hashingOffset], h
and #interfaceId, h, hv
sub table, hv, htable

//subtyping test
load [htable+#htOffset-fieldLen], id
comp #interfaceId, id
bne #fail

//method invocation
load [htable +#htOffset], itable
load [itable +#methOffset], methAddr
call methAddr

h

method tablehashtable

offset
method

hashing
offset

table

hv

htOffset

itableid

methAddr

The method table is bidirectional. Positive offsets contain
method addresses and class IDs, as in SST, and negative off-
sets consist of the hastable, with a twofold entry for each im-
plemented interface. The grey rectangle denotes the group of
methods introduced by the considered interface. fieldLen
represents the entry size, e.g. 8 if 32-bit integers are used.
In practice, all numbers (i.e. H and class ID’s) must be mul-
tiplied by fieldLen (of course, it works only if it is a power
of 2).

Figure 2: PH for Java interfaces

approach would work with dynamic typing but it would not
be that efficient. Indeed, with this implementation, there
is no way to shortcut polymorphic PH invocations with a
more direct invocation sequence, because the position in-
variant does not hold.

PH restricted to overloaded methods. Finally, Figure 4
presents the implementation we propose in a Smalltalk-
like setting. Like the multiple-subtyping implementation
(Figure 2), it combines the SST implementation with a hashtable.
However, instead of being inlined in the negative offset of
the method table, the hashtable is now a separate table,
and is thus accessed via an indirection. This is of course less
efficient, mostly because of ensuing cache-misses, but the
hashtable is now restricted to methods that are introduced
by several classes, and it should be used only marginally.

2.2 Special cases
Besides this general object representation, dynamic typing

yields a few specific cases which complicate the generated
code and add overhead.

• The unknown-method exception is a consequence of
runtime type errors, and each method invocation must
check that the right method is invoked; this is simply
done by comparing the invoked selector ID with the
expected one in the method preamble.

• Primitive values encode their type as a tag in their bit-
wise representation; they are thus accessed via specific

//method invocation
load [object + #tableOffset], table
load [table + #hashingOffset], h
move #methId, methId
and methId, h, hv
add table, hv, htable
load [htable +#htOffset], methAddr
call methAddr

table

hashing
offset

hashtable

h

methAddr

htOffset

hv

id

The method table consists of the hashtable, which contains a
single entry per method or class. With dynamic typing, the
method identifier (methID) must be checked in the method
prologue, unless the method has been introduced by the hi-
erarchy root.

Figure 3: PH of all methods for dynamic typing and
multiple inheritance

techniques like polymorphic inline cache (PIC) [Hölzle
et al., 1991].

• A null value is used for uninitialized variables and
fields; it can be considered as a special type tag.

Generally, these specific cases must be combined, since a
given invocation site might yield each of them at runtime.
Hence, it markedly increase the code sequence length. How-
ever, some of these points are irrelevant in a few specific
cases, eg when the receiver is self, or for those methods that
are introduced by the hierarchy root. Anyway, the technique
proposed here does not address theses special cases, which
would be tackled as usual.

3. COMPILATION PROTOCOL
As explained in the introduction, we are concerned, here,

with dynamic compilation. The compilation/recompilation
protocol is in charge of a few tasks: (i) computing the data
structures associated with a class; (ii) generating machine-
code from method source code (or bytecode); (iii) recom-
piling some data structures and pieces of code when the as-
sumptions supporting the previous compilation are no longer
valid.

The protocol relies on the principle that some part of
the generated code or structure is compatible with the open
world assumption (OWA), so that it is computed in an in-
cremental way, once for all. In contrast, another part makes
provisory close world assumptions (CWA), which allows the
compiler to perform aggressive optimizations at the price of
potential recompilations when underlying assumptions are
refuted.

In the recompilation protocol, we consider dynamic class
loading, but exclude class reloading.



// method invocation for overloaded methods
load [object + #tableOffset], table
load [table + #hashingOffset], h
load [table +#htOffset], htable
move #methId, methId
and methId, h, hv
add htable, hv, htable
load [htable], methAddr
call methAddr

// other invocations are like
// with SST

table

hashing
offset

htable

h

htOffset

method table

methOffset

hashtable

methAddr

hv

methAddr
id

The method table is the same as with SST, apart from
two extra fields for referencing the hashtable (#htOffset)
and the hashing parameter (#hashingOffset), which can
be loaded in parallel on processors that provide instruction-
level parallelism. The hastable contains a single entry per
method, only for methods that have been introduced by
more than one class.

Figure 4: PH of overloaded methods for dynamic
typing and single inheritance

3.1 Data structures
The data structures associated with a class are twofold.

Each time a class is loaded, the runtime system builds a
model of this class, ie an instance of some metamodel (eg
the metamodel proposed in [Ducournau and Privat, 2011]).
This model links the newly loaded class with its superclasses
and the methods the class defines, inherits or introduces—
these terms have intuitive meanings that are formalized in
[Ducournau and Privat, 2011]. Methods that are introduced
by several classes are of course distinguished, and we call
them overloaded. This model is incremental and must be
updated with further class loadings, when a previously non-
overloaded method becomes overloaded. Non-overloaded is
thus a provisory, mutable feature, while overloaded is defini-
tive and immutable. Moreover, the model must maintain in-
formation about the liveness of classes and methods. A class
is alive if it has been instantiated, while a method selector is
alive if it has been already invoked. The definition may be
slightly enlarged, by considering that compiling an instanti-
ation or invocation site is enough for making a class/method
alive. Therefore, the overall protocol can be considered as a
kind of static analysis like Rapide Type Analysis (RTA) [Ba-
con and Sweeney, 1996], which is run very dynamically as
the classes are loaded and the code is executed. In this situ-
ation, RTA is equivalent to Class Hierarchy Analysis (CHA)
[Dean et al., 1995]. Note, however, that this runtime analy-
sis is different from profiling and remains static.

Class loading is triggered in two situations: (i) directly,
when the considered class is instantiated (new); (ii) recur-
sively, when a subclass is loaded. Methods tables are com-
puted as soon as the considered class is instantiated, hence
only in case (i), or when an already loaded class is instanti-
ated for the first time. The method table itself is computed
as in SST, but the hashtable is allocated in a lazy way, when
it contains an overloaded method that is already alive, ie
such that an invocation site has been already compiled. In
the following, we will assume that this computation is done
at class loading, but it could be postponed as well.

When the hashtable is computed, a perfect numbering
algorithm is applied as follows. Let C be the considered
class. Then MC is the set of methods known by C that
are introduced by several already-loaded classes. Some of
these methods have already an ID, because they have been
hashed in other classes. Let M ′

C be this subset, and I ′C =
{idx|x ∈M ′

C} be the corresponding set of method IDs. The
other methods in MC have no IDs, because they have not
been hashed yet, and some subset M ′′

C must be hashed now.
Note that the latter subset may include all the overloaded
methods known by C, or only those that are invoked in
some methods that must be compiled or recompiled; this is a
matter of tuning of the protocol. The respective cardinalities
of these sets are denoted n′

C and n′′
C .

Perfect numbering is then applied with I ′C and n′′
C as

inputs; its outputs are a hash parameter Hc and a set of
method IDs I ′′C , of cardinality n′′

C , which are assigned to the
methods in M ′′

C . A hashtable of size HC is computed, filled
and linked to the method table.

The algorithmic aspect is developed in a companion tech-
nical report [Ducournau, 2012].

3.2 Code generation
In the following, we consider only method invocation. In-

deed, the case of subtype tests is similar to, though simpler



than, method invocation and we don’t develop it. Besides,
with Smalltalk-encapsulation and single inheritance, at-
tribute access is like with SST.

Method compilation is lazy, and it may be triggered by a
trampoline in method- or hash-tables. When a method is
compiled, each invocation site in the method body is com-
piled, and this is the main focus of the compilation protocol.

Firstly, different kinds of invocation sites can be distin-
guished from each other, and the distinctions can be static
and hold under the OWA, or dynamic and hold under a pro-
visory CWA. The distinction concerns both the receiver and
the invoked method.

• Statically, the receiver may be a literal; self, ie the
current receiver which is statically typed by the en-
closing class; or anything else.

• Dynamically, the receiver may be null, a tagged value
or a standard object.

• Statically, the invoked method may be introduced by
the hierarchy root.

• Provisorily, the invoked method may be unknown, be-
cause the classes that introduce it have not been loaded
yet, or it may be unknown in the static type of the
receiver, in the specific case of self, or even in the re-
ceiver’s dynamic type when it can be statically infered,
eg for a literal or a direct instanciation (new).

• Provisorily, the invoked method may be monomorphic,
it can be introduced by a single class, or several ones.

• Provisorily, the invoked method may be introduced by
“standard” classes, ie classes without primitive sub-
types, or not.

The complete combination gives the decision tree in Fig-
ure 5.

3.3 Recompilation protocol
As mentioned above, the protocol is based on a model

of the programs which involves an explicit representation of
classes, method selectors and definitions, and method invo-
cation sites, along with their relations to each other. Each
method selector memorizes the method invocation sites com-
piled in a provisory way, so that the loading and compilation
of a new definition for this method selector can trigger the
recompilation of the concerned sites or enclosing methods.

Technically, recompilation can work at the method level,
or at the invocation-site level. In the former case, the whole
method is recompiled and the content of some method tables
is updated. In the latter case, the invocation site is compiled
into a stub function, called a thunk, and the original method
code is modified (code patching) in order to call it. A mixed
approach should likely be preferred. There are well-known
issues, when the recompiled method is currently active, or
for register allocation with code patching, but they remain
out of the scope of this paper.

3.4 Optimization, laziness and efficiency as-
sessment

The optimization problem is actually markedly more com-
plicated than stated in Section 3.1, because several hashta-
bles must be optimized at the same time (one for each class

1. The receiver is a literal

(a) the method is not known by the literal type → static
type error;

(b) otherwise → static call to the specific method (no test
needed);

2. The receiver is self, and let C be the enclosing class, then

(a) the method is unknown by all loaded subclasses of C
→ static call to the unknown-method function;

(b) the method is known by C

i. and not redefined in the subclasses of C → static
call to the method inherited by C (no test)

ii. otherwise

A. C is a standard class → SST implementation

B. C is a primitive type → PIC implementation

C. otherwise → combined PIC-SST implemen-
tation

(c) the method is introduced by a single subclass D of C,

i. and not redefined in the subclasses of D → static
call with a subtype test (depends on whether D
is a standard class or a primitive type);

ii. D is a standard class → SST implementation

iii. D is a primitive type → PIC implementation

iv. otherwise → combined PIC-SST implementation

(d) the method is introduced by multiple subclasses of C

i. the introduction subclasses are only standard
classes → PH implementation

ii. the introduction subclasses are only primitive
types → PIC implementation

iii. otherwise → combined PIC-PH implementation

3. otherwise

(a) the method is unknown → static call to the unknown-
method function;

(b) the method is introduced by the root:

i. it is currently monomorphic (not redefined in any
class) → static call;

ii. it is not redefined in primitive types → SST im-
plementation;

iii. otherwise → PIC+SST implementation;

(c) the method is introduced by a single class D ⇒ (2-c);

(d) otherwise ⇒ (2-d);

Conditions are tested sequentially (ie each condition implies the
negation of the previous ones). Italic type denotes provisory con-
ditions.

Figure 5: Decision tree of the compilation protocol



introducing a method in M ′′
C), whereas what we called per-

fect numbering is intended to optimize a single hashtable.
A more accurate formulation is presented in [Ducournau,
2012].

Efficiency assessment is characterized by three non-independent
parameters, namely (i) the memory occupation, especially
the hashtable size; (ii) the recompilation cost, for instance
the numbers of hashtable recomputations and allocations,
and method recompilations; (iii) the time-efficiency of the
generated code, which depends on the numbers of sites ac-
cording to their respective implementation. In the follow-
ing, we will consider only the first two criteria, hashtable
size and recomputation number. When a newly overloaded
method is hashed, the hashtables of all of the living classes
that have this method must be recomputed. For each class,
there are two cases: (a) the new hash parameter is the same
as previously, and the hashtable has just to be updated by
assigning the new method at curretnly free palces; (b) the
hashtable must be enlarged, by allocating a new hashtable
and reinitializing it. Only the last case presents a significant
cost.

The overall protocol is essentially lazy, and laziness con-
cerns not only allocation and computation time, but also
computation content. Laziness should have marked impact
on the two efficiency criteria, but it might be in opposite
directions.

• Hashtables should be allocated just-in-time, hence only
when an overloaded method is invoked on a direct in-
stance of the considered class. A simple way to do it is
to initialize each method table with a common single-
entry hashtable filled with a trampoline which will al-
locate the actual hashtable. This is the only point for
which there is no doubt, and just-in-time allocation
will be optimal on all criteria.

• The actual hashtable computation, which involves as-
signing IDs to method selectors, could occur at any
time between the class loading and the hashtable allo-
cation. From both the hashtable-size and compilation-
cost standpoints, the effect of the computation time is
unclear, because our actual optimizing algorithm iter-
ates on method selectors in a non-optimal way.

• The hashtable computation and allocation may con-
sider the whole set of known overloaded methods, or
only those that have been considered alive, eg because
an invocation site has already been compiled. If com-
putation and allocation are restricted to live meth-
ods, the hashtable size will be optimized. However, it
will likely increase the number of recomputations, each
time a new overloaded method becomes alive. Our ex-
periments are too coarse-grained to take method live-
ness into account.

4. EXPERIMENTS AND EVALUATION
Perfect method hashing and numbering has been tested,

with different variants, on a few Smalltalk benchmarks
similar to those used in previous articles, eg [Ducournau,
2008, 2011]. All experiments are done with random class-
loading, as in [Ducournau and Morandat, 2011].

4.1 All-method perfect numbering

Table 1: Statistics of method selectors with single
or multiple introduction

(a) Single introduction

introduced inherited
total µ max total µ max

visualworks2 10465 5.4 153 506083 258.7 465
digitalk3 8577 6.3 326 559007 412.2 880
digitalk2 3902 7.3 215 139698 261.6 522

The table depicts the number of selectors that are intro-
duced in a single class, along with the average and maximum
numbers per class. The second group depicts the number of
corresponding methods known by all classes.

(b) Multiple introduction

method introduced
number total µ max

visualworks2 2112 6235 3.2 108
digitalk3 1481 4427 3.3 114
digitalk2 585 1632 3.1 75

The table depicts the number of method selectors that are
introduced in several classes, then the statistics per class.

(c) Taking sharing into account

all inherited shared inherited
total µ total µ max

visualworks2 72226 36.9 52974 27.1 181
digitalk3 54989 40.6 41544 30.6 255
digitalk2 15098 28.3 10765 20.2 158

The two column groups present the number of inherited
overloaded methods per class, and they differ by the fact
that sharing is taken into account or not.

We first tested all-method perfect numbering, which ap-
pears to be rather space inefficient. The place is missing,
here, for reporting these tests and readers are referred to
the companion technical report [Ducournau, 2012].

4.2 Perfect numbering restricted to overloaded
methods

The second experiment concerns class hierarchies in sin-
gle inheritance, when methods are distinguished from each
other according to the number of their introduction classes.
Table 1 presents the statistics of method definition accord-
ing to whether methods are introduced by a single class or
several ones. They show that most methods are introduced
by a single class. Hence, perfect hashing could be consid-
ered because it would apply to a small subset of all method
invocations, and the required memory requirement would
remain low.

Finally, we experimented the optimized algorithm of [Ducour-
nau, 2012] on these Smalltalk class hierarchies, with ran-
dom leaf-class loading, as in [Ducournau and Morandat,
2011].

Results are now presented as an average size per class,
instead of being a ratio to SST, as in Table ??. The last
column recalls the SST average (column ‘inherited µ’ of Ta-
ble ??).



Table 2: Statistics of PH for overloaded methods

hashed optim. PN-and SST
min µ max

visualworks2 27.1 39.6 69.1 85.5 109.1 295.7
digitalk3 30.6 44.3 74.1 91.5 130.3 452.8
digitalk2 20.2 27.6 38.9 48.3 64.6 289.9

Each column presents the average number per class of, suc-
cessively, the hashed methods, the theoretical PH optimum,
the observed random statistics of PH entries. For the sake of
comparison, the last column depicts the number of entries in
the SST method table. The total extra size for the PH ap-
proach must be increased by two, for taking into account the
extra indirection and hash parameter in the method table.

Table 3: Statistics of recompilation

all shared
updates allocations number of

min max min max HT classes

visualworks2 5739. 8076. 1576. 2081. 1066 1956
digitalk3 4162. 5739. 1116. 1603. 753 1356
digitalk2 1191. 1675. 470. 636. 301 534

Space efficiency. Table 2 sums up our results with re-
spect to the memory occupation required by the hashtables.
Sharing is taken into account, as a subclass may share the
hashtable of its direct superclass, when the subclass does
not introduce any proper overloaded method.

For instance, the results for the visualworks2 benchmark
can be read as follows. On average there are 27.1 methods
per class that must be hashed, and it sets the average mask
lower-bound to 39.6, based on the number of 1-bits required
for hashing the considered methods. The ratio between these
two numbers is always in range 1..2, and it represents the op-
timal occupation ratio (Proposition 3.7 in [Ducournau and
Morandat, 2011]). The PN-and columns present the statis-
tics of the hashtable size according to class loading orders.
On average, it is about twofold the optimal and 3-fold the
method number, and the deviation is rather small (about
10-20%). The useful PN-and columns presents the same
statistics, restricted to the hashtable entries that are actu-
ally reachable. The difference could be reused for allocating
other data. Finally, for the sake of comparison, the last col-
umn presents the average size of the method tables, based
on the SST implementation. It shows that hashtables would
represent only 30% of the method tables. Although not neg-
ligible, it remains quite reasonable in comparison with all-
method PH or C++-like subobject-based implementation,
both techniques whose ratio to SST can exceed 6 (Table ??).
Moreover, it would replace the data structures, eg hashta-
bles, used for the usual Smalltalk lookup.

One might observe that the results of perfect class num-
bering are markedly closer to the optimum than these. This
is simply explained by the fact that the optimum of per-
fect class hashing is reached with a single-inheritance hier-
archy [Ducournau and Morandat, 2011], and this extends to
method hashing when all methods are introduced by a sin-
gle class, too. Hence, methods with multiple introduction
represent bad cases, and this approach considers only bad
cases.

Runtime-efficiency of the algorithm. Regarding the runtime-
efficiency of the algorithm, it appears that it is not that fast,
and markedly slower than our previous applications of per-
fect hashing. Therefore, a careful implementation seems to
be essential.

Recomputation cost. The recomputation cost is less easy
to assess, because our simulation is eager, and the hashtable-
recomputation count is markedly exaggerated in comparison
with a lazy behaviour. Anyway, Table 3 presents statistics
on different parameters. The first column group represents
the count of all hashtable computation and recomputations,
when sharing is taken into account. However, the fact that
the hashtable size may remain unchanged in the computa-
tion, hence making the update straitghtforward, is not con-
sidered. In contrast, the second group represents the count
of recomputations that involve an enlargment of the consid-
ered hashtables. Thus it is the exact number of hashtables
that would be allocated during the loading of all classes. The
third group presents different class numbers: classes that
(i) introduce or (ii) know overloaded methods, then (iii) all
classes. The former is exactly the number of shared non-
empty hashtables that are required when all of the classes
have been loaded. In contrast, the number of shared recom-
putation represent the number of dynamic allocations of a
hashtable which is larger than the previous one. Initially,
each class is initialized with a common empty hashtable, ie
a hashtable with a single empty entry. Therefore, the test
shows that the number of allocations is higher than what
is required, in a ratio less than 2 on average. Finally the
number of all shared recomputations is far higher, but they
mostly involve updating an existing hashtable which does
not require to be enlarged, and the extra cost only implies
a few assignments.

For instance, with the visualworks2 benchmark there are
1066 classes introducing overloaded methods. On average,
with leaf-class ordering (lower subtable), 6697 hashtable up-
dates are needed, including 1796 allocations.

5. RELATED WORKS
Smalltalk and Self have been pionneers of object-oriented

implementation and compilation in a dynamic typing and
dynamic loading setting. In this context, all the techniques
that we are aware of rely on inline caches [Conroy and
Pelegri-Llopart, 1983, Deutsch and Schiffman, 1984, Hölzle
et al., 1991]. An inline cache can be viewed as a guarded
monomorphic call. The receiver’s dynamic type is compared
to an expected type, and a success yields a static call. In
case of failure, an obscure process called lookup is performed,
and looks up in the class hierarchy for the method that must
be invoked.

There are a variety of inline caches, and they can be static
or dynamic, mono- or poly-morphic. While a static cache3

is immutable and results from static compilation, dynamic
caches are mutable and result from the runtime behaviour
of the program; for instance, a cache miss yields the up-
date of the cache with the lookup result; runtime profiling
is also possible. Polymorphic caches involve more than one
expected type. Overall, inline caches present pros and cons.
When their guard succeeds, they are very efficient because
of conditional-branching prediction of modern universal pro-

3A static cache looks like an oxymoron.



cessors. Hence, in the best cases, inline caches are almost
as efficient as static calls. These best cases include the cases
where the receiver is monomorphic (see footnote 2). When
the invocation, instead of the receiver, is monomorphic, the
guard must access the method table in order to compare the
invoked method with the expected one. This is mainly used
for inlining.

What about bad cases? In practice, the failure case, ie the
famous lookup, is inefficient. Indeed, we are not aware of any
constant-time technique available in dynamic typing apart
from perfect hashing. Therefore, to our knowledge, there is
currently no efficient solution to method dispatch for highly
polymorphic invocation sites, whose receiver’s dynamic type
is constantly changing and the invoked method covers a large
set of several tens methods. In these situations, the proposed
approach is a marked improvement.

Moreover, when the receiver’s dynamic type is steadier,
the cache might be efficient at a moment, not during the
whole programm execution. For instance, in the program
prologue, an invocation site may have receivers of type A,
then receivers of type B during the rest of the execution.
If the site is optimized according to the prologue it will be
unoptimized for the main part of the execution. Polymor-
phic caches are a solution, but it is always possible to build a
bad case from any good situation. Another solution involves
dynamic caches, but runtime profiling is so costly that the
solution might be worst than the problem. Inline caches
also yield longer code sequence, which increases the over-
all code size. While it could be envisaged to factorize the
same polymorphic cache between several similar invocation
sites, experiments shows that the prediction of conditional
branching loses its accuracy.

In contrast, our proposal does not involve any of the draw-
backs of inline caches, and it provides better solution for
some of their best aspects, eg for monomorphic invocations
instead of monomorphic receivers. The worst case of our
proposal, ie perfect hashing, is likely more efficient than the
lookup, although the latter might use the former. Further-
more, it remains possible to couple inline caches with the
less efficient sequences generated according to our proposal,
which are not so many.

Distinguishing between overloaded and non-overloaded meth-
ods was also proposed in [Vitek and Horspool, 1994], how-
ever in the context of global, static compilation.

6. CONCLUSION AND PROSPECTS
In this paper, we proposed a novel object representation

for method dispatch in dynamic typing, single inheritance
and dynamic loading. In this context, to our knowledge, this
is the first constant-time implementation of method dispatch
that requires reasonable memory occupation.

This technique involves hashing overloaded methods, and
its efficiency relies on the fact that they are not too many.

Simulation over a few Smalltalk benchmarks show that
the technique is promising. Indeed, the number of over-
loaded methods is actually low, and the overall hashtable
size remains reasonable. However, the simulation we carried
out is unable to assess the recompilation cost, because it
is markedly more eager than would be an actual compiler.
Hence the cost that we observed are exaggerated.

Therefore, the main prospects of this work is to perform
simulations that would be closer to actual executions, for in-
stance by adapting the simulations used in [Ducournau and

Morandat, 2012] to dynamic typing. It would be worth con-
sidering, too, the possibility of simulating these implemen-
tation and recompilation protocol in a Smalltalk virtual
machine via meta-programming.

Finally, this proposal is mostly cross-cutting standard op-
timizations like method inlining, and we do not expect that
it will increase or decrease the difficulties raised by adaptive
optimizations. However, real-size experiments are needed to
confirm this expectation.
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